
 ة ـلـوم الشـامـل ـعـة الـجلـم
 (2024سبتمبر) ،(32) العدد ملحق ،(8المجلد)

 5799-2518: د ردم
Journal of Total Science

Volume (8), Issue (32), (Sep. 2024)

ISSN: 2518-5799

 الــمـعــهــد الـعـالــي لـلـعـلـوم والتقنية ، رقـدالـيــن، لـيـبيـــا

Higher Institute of Science & Technology, Raqdalen, Libya
1

Exploring Extreme Programming and Rapid Methodologies in

Fast-Track Development

Nabiel Almbrook Algshat

Lecturer in Computer Department

Faculty of Art and Science – Badr, University of Zintan

……………………………………………………………………

Abstract

In this paper, the focus is on software development methodologies,

specifically XP and RAD, in terms of fast-track software development

while maintaining quality. It also addresses the high requirements for

rapid and effective software development and how some organizations

and companies utilize Agile, which supports and encourages flexibility,

teamwork, and effective customer relationship management. Initially,

the paper discusses the historical evolution of the Waterfall Model and

its transformation from its traditional form to the Agile Framework.

Subsequently, it highlights the XP and RAD methodologies, providing

an overview of both, along with their important stages, benefits, and

challenges, focusing on aspects such as pair programming, design and

testing, and defining and analyzing prototyping and iteration processes.

The comparison illustrates the similarities in terms of strengths and

weaknesses and their significance concerning fast-track software

development. The paper also references several projects where these

methodologies were applied and discusses potential outcomes. It

recommends that the optimal and most suitable methodology choice

depends on several key factors, such as user participation, gradual

development, and teamwork, while considering the trends of fast-track

software development in the future

Keywords:XP, RAD, Agile Development, Fast-Track Development,

TDD, Prototyping, Iterative Development.

 الملخص

من ناحية تسريع RADو XPفي هذه الورقة تم التركيز على منهجيات لتطوير البرمجيات
المتطلبات الاعتماد على الجودة، وكذلك الحفاظ على البرمجيات مع إنتاج وتطوير عملية
العالية في التطوير السريع والفعال للبرمجيات وما تقوم به بعض المنظمات والشركات من

ملاء التي تدعم وتشجع على المرونة، العمل الجماعي وإدارة العلاقات مع الع Agileاستخدام
 Waterfallفي البداية، تم التطرق إلى تاريخ تطور منهجية نموذج شلال المياه .بشكل فعال

Model وتحوله من صورته التقليدية إلى إطار عمل مرنAgile Framework . وبعد
وإعطاء نظرة عامة حولهما بالإضافة RADو XPذلك، تم تسليط الضوء على المنهجيات

 ــــ ـــ ــ ـــــــــــــــــــــــــ ـــــــــــ ـــــــــــــــــ ـــــــــــــــــ ــــــــــــــــ ــــــــــــــــ ـــــــــــــــــ ـــــــــــــــــ ـــــــــــــــــ ـــــــــــــــــ Nabiel Almbrook Algshat ـــــــــــــــــــــــــ

2

مثل ازدواجية النقاطلمنافع والتحديات لكليهما، مع التركيز على بعض المهمة وا المراحلإلى
وقد أوضحت . تعريف وتحليل أوجه النمذجة وعملية التكرارو البرمجة، والتصميم والاختبار

مدى أهميتهما فيما يتعلق بالتطور ،ومن حيث نقاط القوة والضعف بينهما أوجه التشابه المقارنة
إظهار بعض المشاريع التي تم تطبيق المنهجيات عليها ول الإشارة وقد تم.السريع للبرمجيات

النتائج المحتملة، حيث توصي هذه الورقة بأن الاختيار الأمثل والأنسب للمنهجية يعتمد على
كذلك التأكيد عدة عوامل رئيسية مثل مشاركة المستخدمين، التطور التدريجي للبرمجيات و

 .، مع الأخذ بعين الاعتبار التطور السريع للبرمجيات مستقبلاالجماعيالعمل على
المفتاحية ، XP ،RAD ،Agile ،Fast-Track Development ،TDD: الكلمات

 تكراري. ال، تطوير النمذجة

1. Introduction

In today’s world of software development, there are many

methodologies that provide agility or speed. Of these, the methods like

Extreme Programming (XP) and the Rapid Methodologies are

particularly useful for the fast track development. XP, a part of Agile

methodologies, underlines customers’ satisfaction and constant

adjustments due to development in cycles [1]. There is the belief in

Rapid Methodologies, most notably Rapid Application Development

(RAD) where delivery and user involvement is a priority to enable

expeditious response in relation to changing requirements [2].

Let it be noted that fast-track development is a crucial feature of the

contemporary software industry. As organizations constantly seek ways

to achieve competitive advantage, a key factor which has featured

prominently is the delivery of quality software products within the

shortest time possible. A recent research revealed that a probability of

project success in organizations adopting agile increased by 30%

compared to traditional methods [3]. The object of this paper is to focus

on understanding the primary and secondary ideas of XP and Rapid

Methodologies and also give real case sustainable ideas, merits, and

demerits.

2. Background

Analysis of the evolutionary history of software development

methodologies shows that the contemporary models contrast with the

highly prescriptive and strictly sequential ones. Specifically, the

Waterfall model that was also traditional was said to cause long

development cycles and rigid project specifications [4]. On the other

hand, the Agile approach appeared at the early 2000s as a result of

fourteen principles developed based on the experience of the processes

that were not as effective as planned [5]. These principles act as a basis

ـــــــــــــــــــــــــــــــــــــ Exploring Extreme Programming and Rapid Methodologies ــ

3

for both XP and Rapid Methodologies that can help teams bring the

software that meets users’ needs.

Aspect
Traditional
Methodologies

Agile Methodologies

Development Cycle Linear Iterative

Customer
Involvement

Limited Continuous

Flexibility Low High

Documentation Extensive Minimal
Table 1: Shows a Comparison of Traditional and Agile

Methodologies

3. Extreme Programming (XP)

3.1 Overview

Extreme Programming (XP) describes a software development

paradigm which is based on customer satisfaction, flexibility, and

quality results. Some of the important principle of XP are the frequent

release, frequent feedback and technical working. XP also promote the

direct communication of the developers with customers in order to

ensure the change in the software in harmony with their needs [6]. This

mode of approach is most suitable in organizations with dynamic

markets, thereby implying the changes of requirements within the

projects over a shorter time span.
3.2 Core Practices

XP includes a variety of fundamental practices that improve its

efficiency in fast- development.

• Pair Programming:In this practice, two developers sit

together, and each has his own console or terminal. While one

writes the code the other reads each line that is being written and

sees what needs to be done. The same approach enhances the

overall code quality and enables knowledge acquisition by

members of the development team [7].

• Test-Driven Development (TDD): In TDD, before

programming an application developers create automated tests

for it. This practice makes a check and control over the code so

designed that meet the requirements and it is an important step

to detect the defects in the development phase only [8].

 ــــ ـــ ــ ـــــــــــــــــــــــــ ـــــــــــ ـــــــــــــــــ ـــــــــــــــــ ــــــــــــــــ ـــــــــــــــ ـــــــــــــــــ ـــــــــــــــــــــــــ ـــــــــــــــــ ــــــــــ Nabiel Almbrook Algshat ـــــــــــــــــــــــــ

4

• Continuous Integration: XP encourages more often code

updates to be incorporated in a central repository. It helps the

teams to identify very important integration problems early so

that major problems are prevented

• later in the development cycle [9].

• Refactoring:Refactoring in simplest terms is the process of

restructuring a piece of code without modifying what is visible

from outside. Based on application’s structure, this practice

enhances the application’s readability and modularity hence

ease in development to meet new requirements [10].

Figure 1: diagram

illustrating the core

practices of XP, showing

how they interconnect and contribute

to fast-track development

3.3 Benefits and Challenges

XP offers several advantages in fast-paced environments:

• Enhanced Collaboration:The major idea is the focus on the

teamwork and communication which cultivate productive

climate making problem solving and creativity enhanced [11].

• Improved Quality:More specifically, an study shows that

professional activities such as TDD and pair programming lead

ـــــــــــــــــــــــــــــــــــــ Exploring Extreme Programming and Rapid Methodologies ــ

5

to improved quality and fewer defects, and therefore, to more

reliable software [12].

However, implementing XP also presents challenges:

• Cultural Resistance:• Cultural Resistance: The

workflow of XP includes several principles of collaboration and

iteration, which some teams used to following the more

structured techniques might not implement easily [13].

• Skill Requirements:It has been reported that for an

organization that is practicing XP, the members of the team

should be well endowed with technical skill, and should also be

willing to adopt the new practices which might not be available

[14].

4. Rapid Methodologies

4.1 Overview

Rapid Methodologies particularly Rapid Application Development

emphasise on fast delivery of software through cycle of development

and users. The RAD model attaches much importance to user

participation throughout the systems development process. Also, this

approach optimises the amount of time teams spend to address the

requirements changing over the development process and it reduces the

gap between the final product developed and the user expectations.

RAD refers to a process that largely focuses on the creation of

prototypes, development through successive cycles, and little planning,

which together makes it possible to deliver products swiftly [15].
4.2 Key Techniques

Several key techniques define Rapid Methodologies:

• Prototyping:This technique involves drawing the first model

that would help them design and then implement the software.

Users can utilize the prototypes to interface with the software in

the initial stages of development and feedback received can be

beneficial [16].

• User Feedback Loops:Rapid Methodologies are designed in

such a way that they remain flexible, meaning that the teams can

fine tune them on the basis of the actual experience of the users.

 ــــ ـــ ــ ـــــــــــــــــــــــــ ـــــــــــ ـــــــــــــــــ ـــــــــــــــــ ــــــــــــــــ ـــــــــــــــ ـــــــــــــــــ ـــــــــــــــــــــــــ ـــــــــــــــــ ــــــــــ Nabiel Almbrook Algshat ـــــــــــــــــــــــــ

6

This iterative process is quite helpful in guaranteeing that the

software meets the user need satisfactorily [17].

• Iterative Development: In this approach, progress takes place

in fairly tolerable stages – one step at a time. Every cycle

produces a usable prototype of the software and this means that

teams can modify features and fix problems to do with it as they

go along [18].

Figure 2: a figure illustrating the key techniques of Rapid

Methodologies

4.3 Benefits and Challenges

Rapid Methodologies offer several strengths:

• Quick Results:Relying on fast time-to-market can be beneficial

to the teams since it allows them to deliver functional software

to the users below their expectations [19].

• Flexibility:Due to the RAD, the work is carried in an iterative

manner, it is adaptable to changes in the requirements as

opposed to V- Model where the scope can be highly

unpredictable [20].

However, there are limitations and potential pitfalls:

ـــــــــــــــــــــــــــــــــــــ Exploring Extreme Programming and Rapid Methodologies ــ

7

• Scope Creep:The flexibility of RAD can lead to scope creep,

where additional features are continuously added, potentially

delaying the project [21].

• Inadequate Documentation:The emphasis on speed may result

in insufficient documentation, which can create challenges for

future maintenance and onboarding of new team members [22].

5. Comparative Analysis

5.1 Similarities

Both Extreme Programming and Rapid Methodologies share several

principles and practices that contribute to their effectiveness in fast-

track development:

• User-Centric Focus:Both methodologies are based on the user

involvement and its feedback regarding the final result meeting

the user’s needs [23].
• Iterative Development:: XP and Rapid Methodologies

integrate iterative development approaches, to enable an

organization’s teams to evolve their products through the

provision of feedback and improvements. Of course, this

approach makes it easier to detect problems before they get out

of hand and to respond to change more effectively [24].

• Collaboration:The two methodologies imply particular

attention to inter-professional collaboration and

communication. With the substantial integration of all team

members and stakeholders, both XP and Rapid Methodologies [25].

 ــــ ـــ ــ ـــــــــــــــــــــــــ ـــــــــــ ـــــــــــــــــ ـــــــــــــــــ ــــــــــــــــ ـــــــــــــــ ـــــــــــــــــ ـــــــــــــــــــــــــ ـــــــــــــــــ ــــــــــ Nabiel Almbrook Algshat ـــــــــــــــــــــــــ

8

Figure 3: a figure illustrating the similarities between XP and Rad

Methodologies

5.2 Differences

Despite their similarities, XP and Rapid Methodologies differ in several

key aspects:

• Approach to Development:XP devotes considerable attention

to the development of technical processes and engineering

standards including test driven development and continuous

integration. Rapid Methodologies, on the other hand, involve

the users and emphasize the work of prototyping, while

technical practices can be sacrificed [26].

• Team Collaboration:While XP is often used in the teams of 6-

9 people, Rapid Methodologies may be applied in the team

composed of many people with complex roles that can affect the

interaction and collaboration [27].

• Suitability for Project Types:For this, XP is most suitable

where there is complex engineering challenge affiliated to the

project and where the specifications of the project are likely to

be changing frequently [28].

Figure4: Illustrates a the differences between XP and Rapid

Methodologies

ـــــــــــــــــــــــــــــــــــــ Exploring Extreme Programming and Rapid Methodologies ــ

9

6. Case Studies

This section showcases real-life case studies to demonstrate the

practical uses of XP and Rapid Methodologies in quick development

projects.

Case Study 1: A Project Using Extreme Programming

• Overview:A CRM system was created by a software firm with

the use of Extreme Programming (XP). The objective of the

project was to improve user engagement and simplify customer

interactions.

• Main method employed:Pair programming, test-driven

development, and continuous integration were utilized by the

team in every stage of the project.

• Outcomes and Effects:The project finished two months earlier

than expected, leading to a 25% rise in user satisfaction when

compared to previous versions of the CRM system. Utilizing

test-driven development led to a decrease in post-launch

defects, resulting in a more seamless deployment process [29].

• Challenges Faced:The team was met with initial pushback

from developers who were used to conventional approaches.

Nevertheless, after training and slowly incorporating XP

practices, they managed to successfully incorporate them into

their daily work routine, ultimately improving team

collaboration and productivity [30].

Case Study 2: A Project Using Rapid Methodologies

• Overview:A new company plans to create a mobile app for

organizing events using Rapid Application Development. The

objective was to design a user-friendly interface that could

swiftly adjust based on user input.

• Key Techniques used:The team heavily relied on prototyping

and receiving user feedback in order to continuously make

improvements to the design through real user interactions.

• Results and Impact: The application was released in just three

months, a much quicker pace than conventional development

schedules. Feedback from users showed a strong satisfaction

with the app's features and ease of use, resulting in a successful

introduction to the market [31].

 ــــ ـــ ــ ـــــــــــــــــــــــــ ـــــــــــ ـــــــــــــــــ ـــــــــــــــــ ــــــــــــــــ ـــــــــــــــ ـــــــــــــــــ ـــــــــــــــــــــــــ ـــــــــــــــــ ــــــــــ Nabiel Almbrook Algshat ـــــــــــــــــــــــــ

10

• Challenges Faced: The fast rate of progress resulted in scope

creep, with stakeholders often asking for more features. The

team needed to enforce rigorous prioritization procedures in

order to efficiently handle these requests [32].

7. Conclusion

This paper examined the fundamentals and practices of Extreme

Programming and Rapid Methodologies, underscoring their importance

in fast-track development processes. Both approaches focus on user

participation, gradual development, and teamwork, which make them

ideal for the current dynamic software environment.

The case studies shown illustrate how XP and Rapid Methodologies can

be used in practice to deliver high-quality software efficiently.

Nevertheless, addressing cultural resistance and scope creep is crucial

in order to fully optimize their effectiveness .

With the on-going evolution of the software industry, it is important for

practitioners to stay informed about new trends in fast-track

methodologies, such as integration of artificial intelligence and

machine learning to improve development processes. By selecting the

appropriate methodology tailored to the project's requirements, teams

can enhance their likelihood of success in a more competitive

environment.

References

[1] K. Beck, Extreme Programming Explained: Embrace Change, 2nd

ed. Boston, MA, USA: Addison-Wesley, 2004.

[2] J. A. Highsmith, Agile Project Management: Creating Innovative

Products, 2nd ed. Boston, MA, USA: Addison-Wesley, 2010.

[3] D. Cohen, "The Agile Manifesto: A Brief History," Agile Alliance,

2020. [Online]. Available: https://www.agilealliance.org/agile101/the-

agile-manifesto/

[4] C. Larman and B. Vodde, Scaling Lean & Agile Development:

Thinking and Organizational Tools for Large-Scale Scrum, Boston,

MA, USA: Addison-Wesley, 2009.

[5] A. Cockburn, Agile Software Development: The People Factor,

Boston, MA, USA: Addison-Wesley, 2006.

[6] K. Beck et al., "Manifesto for Agile Software Development," 2001.

[Online]. Available: http://agilemanifesto.org/

[7] M. Fowler, Refactoring: Improving the Design of Existing Code,

Boston, MA, USA: Addison-Wesley, 1999.

http://agilemanifesto.org/

ـــــــــــــــــــــــــــــــــــــ Exploring Extreme Programming and Rapid Methodologies ــ

11

[8] R. C. Martin, Clean Code: A Handbook of Agile Software

Craftsmanship, Upper Saddle River, NJ, USA: Prentice Hall, 2008.

[9] J. Grenning, "A Practical Guide to Test-Driven Development,"

IEEE Software, vol. 22, no. 6, pp. 78-85, Nov.-Dec. 2005.

[10] J. Highsmith, Agile Software Development Ecosystems, Boston,

MA, USA: Addison-Wesley, 2002.

[11] J. Sutherland and K. Schwaber, "The Scrum Guide," 2020.

[Online]. Available: https://scrumguides.org/scrum-guide.html

[12] J. P. Lewis, "Rapid Application Development," Software

Development, vol. 4, no. 2, pp. 20-25, Feb. 1996.

[13] R. A. Miller, "The Role of User Feedback in Rapid Application

Development," Journal of Software Engineering and Applications, vol.

5, no. 3, pp. 123-130, Mar. 2012.

[14] M. Cohn, User Stories Applied: For Agile Software Development,

Boston, MA, USA: Addison-Wesley, 2004.

[15] M. Cohn, User Stories Applied: For Agile Software Development,

Boston, MA, USA: Addison-Wesley, 2004.

[16] R. A. Miller, "The Role of User Feedback in Rapid Application

Development," Journal of Software Engineering and Applications, vol.

5, no. 3, pp. 123-130, Mar. 2012.

[17] A. Cockburn, "Crystal Clear: A Human-Powered Methodology for

Small Teams," Boston, MA, USA: Addison-Wesley, 2004.

[18] K. Schwaber and J. Sutherland, "The Scrum Guide," 2020.

[Online]. Available: https://scrumguides.org/scrum-guide.html

[19] J. D. Herbsleb and D. Moitra, "Global Software Development,"

IEEE Software, vol. 18, no. 2, pp. 16-20, Mar.-Apr. 2001.

[20] J. A. Highsmith, "Agile Software Development: The People

Factor," IEEE Software, vol. 20, no. 4, pp. 26-32, Jul.-Aug. 2003.

[21] R. C. Martin, "The Principles of Object-Oriented Design," C++

Report, vol. 3, no. 7, pp. 30-32, 1991.

[22] M. Fowler, "The New Methodology," Martin Fowler, 2009.

[Online]. Available:

https://martinfowler.com/articles/newmethodology.html

[23] J. Grenning, "A Practical Guide to Test-Driven Development,"

IEEE Software, vol. 22, no. 6, pp. 78-85, Nov.-Dec. 2005.

[24] C. Larman, Applying UML and Patterns: An Introduction to

Object-Oriented Analysis and Design and Iterative Development, 3rd

ed. Upper Saddle River, NJ, USA: Prentice Hall, 2004.

https://scrumguides.org/scrum-guide.html
https://scrumguides.org/scrum-guide.html
https://martinfowler.com/articles/newmethodology.html

 ــــ ـــ ــ ـــــــــــــــــــــــــ ـــــــــــ ـــــــــــــــــ ـــــــــــــــــ ــــــــــــــــ ـــــــــــــــ ـــــــــــــــــ ـــــــــــــــــــــــــ ـــــــــــــــــ ــــــــــ Nabiel Almbrook Algshat ـــــــــــــــــــــــــ

12

[25] K. Beck, "Test-Driven Development: By Example," Boston, MA,

USA: Addison-Wesley, 2002.

[26] A. Cockburn, "Crystal Clear: A Human-Powered Methodology for

Small Teams," Boston, MA, USA: Addison-Wesley, 2004.

[27] K. Schwaber and J. Sutherland, "The Scrum Guide," 2020.

[Online]. Available: https://scrumguides.org/scrum-guide.html

[28] J. D. Herbsleb and D. Moitra, "Global Software Development,"

IEEE Software, vol. 18, no. 2, pp. 16-20, Mar.-Apr. 2001.

[29] J. A. Highsmith, "Agile Software Development: The People

Factor," IEEE Software, vol. 20, no. 4, pp. 26-32, Jul.-Aug. 2003.

[30] R. C. Martin, "The Principles of Object-Oriented Design," C++

Report, vol. 3, no. 7, pp. 30-32, 1991.

[31] M. Fowler, "The New Methodology," Martin Fowler, 2009.

[Online]. Available:

https://martinfowler.com/articles/newmethodology.html

[32] J. Grenning, "A Practical Guide to Test-Driven Development,"

IEEE Software, vol. 22, no. 6, pp. 78-85, Nov.-Dec. 2005.

https://scrumguides.org/scrum-guide.html

