Fournal of Total Srcience E é ALl aslalldls o

2024 jacisu) ((32) 222)) Gals ¢(8) sl
Volume (8), Issue (32), (Sep. 2024) ¢l ()<(32) 2518-57(93 Ny
ISSN: 2518-5799 T

Exploring Extreme Programming and Rapid Methodologies in
Fast-Track Development
Nabiel Almbrook Algshat
Lecturer in Computer Department
Faculty of Art and Science — Badr, University of Zintan

Abstract
In this paper, the focus is on software development methodologies,
specifically XP and RAD, in terms of fast-track software development
while maintaining quality. It also addresses the high requirements for
rapid and effective software development and how some organizations
and companies utilize Agile, which supports and encourages flexibility,
teamwork, and effective customer relationship management. Initially,
the paper discusses the historical evolution of the Waterfall Model and
its transformation from its traditional form to the Agile Framework.
Subsequently, it highlights the XP and RAD methodologies, providing
an overview of both, along with their important stages, benefits, and
challenges, focusing on aspects such as pair programming, design and
testing, and defining and analyzing prototyping and iteration processes.
The comparison illustrates the similarities in terms of strengths and
weaknesses and their significance concerning fast-track software
development. The paper also references several projects where these
methodologies were applied and discusses potential outcomes. It
recommends that the optimal and most suitable methodology choice
depends on several key factors, such as user participation, gradual
development, and teamwork, while considering the trends of fast-track
software development in the future
Keywords:XP, RAD, Agile Development, Fast-Track Development,
TDD, Prototyping, Iterative Development.

wadlall
& 4l 0e RAD 5 XP Gl il skl ilagia Ao 38 jill 2348) 6l) o0 b
clllidl e slaie V) @S gasall o Blaall ae climall yyshiy 25 dolee
O Sl 5 Clalaiall (ans 40 o 58 Loy Gl jll Jledll 5 o)y pdaill & 4l
¢ anll & a3 5)2) GC\AAJ\ Canll JL'\})AS\ L_;n &‘m} ex:ia ‘._;\S\ Ag||e e\AS:\u\
Waterfall obuall I3 73 i ingia) ghai gy 5 () 3kl &3 gl & Jlad S
25 Agile Framework o dee)) Zoalsil) 45 a0 Al 5235 Model
ALYl Legdsa ddle 3,k0 cllac) s RAD 5 XP Cliagiall e ¢ guall Jaglus &5 ¢l

l_u_\J..M &Q_)J\ﬂ_) ¢ M‘}?MH‘-’J\ A_@_’_A_‘\

Higher Institute of Science & Technology, Ragdalen, Libya

Nabiel Almbrook Algshat

Al) Jie Lol any o 58 5 e clagalS] lpaal) 5 adliall 5 dagall ol el)
Canaa gl 85l Sl dulae 5 Andaill 4l Sty iy 5 JLEAY) 5 maanal 5 cdaa il
Dokl Galahy Lasd Lagiaan] (g0 gecimiall 53 581 Jals Cum (g Lagi 4glil) s) 45)8l
el s e ibimgtiall el o5 1 gLl mnsd 3 JLEY) o5 385 e sl g
o iy Lngiall a1y JiaY) JLsaW) (A5l oda a5 Cum cAlainall il
ASH QS 5 il jll a5l il ¢ peadioall AS i Jie A) ol 5o 320
Skt Silyma sl g pual)) ghaill Slie W) (s 3V g ¢ e laad) Jaall e
«TDD «Fast-Track Development Agile <(RAD «XP :4alidall cilalsl)
(S STy sl el
1. Introduction
In today’s world of software development, there are many
methodologies that provide agility or speed. Of these, the methods like
Extreme Programming (XP) and the Rapid Methodologies are
particularly useful for the fast track development. XP, a part of Agile
methodologies, underlines customers’ satisfaction and constant
adjustments due to development in cycles [1]. There is the belief in
Rapid Methodologies, most notably Rapid Application Development
(RAD) where delivery and user involvement is a priority to enable
expeditious response in relation to changing requirements [2].
Let it be noted that fast-track development is a crucial feature of the
contemporary software industry. As organizations constantly seek ways
to achieve competitive advantage, a key factor which has featured
prominently is the delivery of quality software products within the
shortest time possible. A recent research revealed that a probability of
project success in organizations adopting agile increased by 30%
compared to traditional methods [3]. The object of this paper is to focus
on understanding the primary and secondary ideas of XP and Rapid
Methodologies and also give real case sustainable ideas, merits, and
demerits.
2. Background
Analysis of the evolutionary history of software development
methodologies shows that the contemporary models contrast with the
highly prescriptive and strictly sequential ones. Specifically, the
Waterfall model that was also traditional was said to cause long
development cycles and rigid project specifications [4]. On the other
hand, the Agile approach appeared at the early 2000s as a result of
fourteen principles developed based on the experience of the processes
that were not as effective as planned [5]. These principles act as a basis

Exploring Extreme Programming and Rapid Methodologies

for both XP and Rapid Methodologies that can help teams bring the
software that meets users’ needs.

Aspect -II\-/zzfcjflwth::ir:)T(l)gies Agile Methodologies
Development Cycle | Linear Iterative

Customer Limited Continuous
Involvement

Flexibility Low High

Documentation Extensive Minimal

Table 1: Shows a Comparison of Traditional and Agile
Methodologies

3. Extreme Programming (XP)
3.1 Overview
Extreme Programming (XP) describes a software development
paradigm which is based on customer satisfaction, flexibility, and
quality results. Some of the important principle of XP are the frequent
release, frequent feedback and technical working. XP also promote the
direct communication of the developers with customers in order to
ensure the change in the software in harmony with their needs [6]. This
mode of approach is most suitable in organizations with dynamic
markets, thereby implying the changes of requirements within the
projects over a shorter time span.
3.2 Core Practices
XP includes a variety of fundamental practices that improve its
efficiency in fast- development.

e Pair Programming:In this practice, two developers sit
together, and each has his own console or terminal. While one
writes the code the other reads each line that is being written and
sees what needs to be done. The same approach enhances the
overall code quality and enables knowledge acquisition by
members of the development team [7].

e Test-Driven Development (TDD): In TDD, before
programming an application developers create automated tests
for it. This practice makes a check and control over the code so
designed that meet the requirements and it is an important step
to detect the defects in the development phase only [8].

Nabiel Almbrook Algshat

Programming 3} [% I~
|

Continuous Integration: XP encourages more often code
updates to be incorporated in a central repository. It helps the
teams to identify very important integration problems early so
that major problems are prevented

later in the development cycle [9].

Refactoring:Refactoring in simplest terms is the process of
restructuring a piece of code without modifying what is visible
from outside. Based on application’s structure, this practice
enhances the application’s readability and modularity hence
ease in development to meet new requirements [10].

ir
Pair e J

Test-Driven [1

Development | i
Continuous | !

|

|' ﬂ Fast-Track
| == Development
[

Integration I [|

Refactoring

. | Figure 1: diagram
\ A illustrating the core
\ ||| practices of XP, showing

how they |/ interconnect and contribute

to fast-track NS development

3.3 Benefits and Challenges
XP offers several advantages in fast-paced environments:

Enhanced Collaboration:The major idea is the focus on the
teamwork and communication which cultivate productive
climate making problem solving and creativity enhanced [11].

Improved Quality:More specifically, an study shows that
professional activities such as TDD and pair programming lead

Exploring Extreme Programming and Rapid Methodologies

to improved quality and fewer defects, and therefore, to more
reliable software [12].

However, implementing XP also presents challenges:

e Cultural Resistance:» Cultural Resistance: The
workflow of XP includes several principles of collaboration and
iteration, which some teams used to following the more
structured techniques might not implement easily [13].

o Skill Requirements:It has been reported that for an
organization that is practicing XP, the members of the team
should be well endowed with technical skill, and should also be
willing to adopt the new practices which might not be available
[14].

4. Rapid Methodologies
4.1 Overview
Rapid Methodologies particularly Rapid Application Development
emphasise on fast delivery of software through cycle of development
and users. The RAD model attaches much importance to user
participation throughout the systems development process. Also, this
approach optimises the amount of time teams spend to address the
requirements changing over the development process and it reduces the
gap between the final product developed and the user expectations.
RAD refers to a process that largely focuses on the creation of
prototypes, development through successive cycles, and little planning,
which together makes it possible to deliver products swiftly [15].
4.2 Key Techniques
Several key techniques define Rapid Methodologies:
e Prototyping:This technique involves drawing the first model
that would help them design and then implement the software.
Users can utilize the prototypes to interface with the software in
the initial stages of development and feedback received can be
beneficial [16].

o User Feedback Loops:Rapid Methodologies are designed in
such a way that they remain flexible, meaning that the teams can
fine tune them on the basis of the actual experience of the users.

5

Nabiel Almbrook Algshat

Feedback Collection -

User Interaction --

This iterative process is quite helpful in guaranteeing that the
software meets the user need satisfactorily [17].

Iterative Development: In this approach, progress takes place
in fairly tolerable stages — one step at a time. Every cycle
produces a usable prototype of the software and this means that
teams can modify features and fix problems to do with it as they
go along [18].

. =

Bl
Prototyping {22 | -,
Ik\—.—"‘ 6¢§
Initial Model -4

r- Flexibility

Rapid
Methodologies

r- User Experience

~- Software Refinement

r- Usable Prototype
r- Feature Modification

=+ Problem Fixing

Figure 2: a figure illustrating the key techniques of Rapid
Methodologies

4.3 Benefits and Challenges
Rapid Methodologies offer several strengths:

Quick Results:Relying on fast time-to-market can be beneficial
to the teams since it allows them to deliver functional software
to the users below their expectations [19].

Flexibility:Due to the RAD, the work is carried in an iterative
manner, it is adaptable to changes in the requirements as
opposed to V- Model where the scope can be highly
unpredictable [20].

However, there are limitations and potential pitfalls:

Exploring Extreme Programming and Rapid Methodologies

Scope Creep:The flexibility of RAD can lead to scope creep,
where additional features are continuously added, potentially
delaying the project [21].

Inadequate Documentation:The emphasis on speed may result
in insufficient documentation, which can create challenges for
future maintenance and onboarding of new team members [22].

5. Comparative Analysis

5.1 Similarities

Both Extreme Programming and Rapid Methodologies share several
principles and practices that contribute to their effectiveness in fast-
track development:

User-Centric Focus:Both methodologies are based on the user
involvement and its feedback regarding the final result meeting
the user’s needs [23].

Iterative Development:: XP and Rapid Methodologies
integrate iterative development approaches, to enable an
organization’s teams to evolve their products through the
provision of feedback and improvements. Of course, this
approach makes it easier to detect problems before they get out
of hand and to respond to change more effectively [24].
Collaboration:The two methodologies imply particular
attention to inter-professional collaboration and
communication. With the substantial integration of all team
members and stakeholders, both XP and Rapid Methodologies [25].

&

Collaboration EEJ\]H 2.8 Collaboration
lterative 7 (@ lterative
Development D_n_l]ﬂ "/ Development
User-Centric (52 F.{F’ User-Centric
Focus 202 B88 Focus

Extreme Programming AN Rapid Methodologies

Nabiel Almbrook Algshat

Figure 3: a figure illustrating the similarities between XP and Rad

Methodologies

5.2 Differences
Despite their similarities, XP and Rapid Methodologies differ in several
key aspects:

Approach to Development: XP devotes considerable attention
to the development of technical processes and engineering
standards including test driven development and continuous
integration. Rapid Methodologies, on the other hand, involve
the users and emphasize the work of prototyping, while
technical practices can be sacrificed [26].

Team Collaboration:While XP is often used in the teams of 6-
9 people, Rapid Methodologies may be applied in the team
composed of many people with complex roles that can affect the
interaction and collaboration [27].

Suitability for Project Types:For this, XP is most suitable
where there is complex engineering challenge affiliated to the
project and where the specifications of the project are likely to
be changing frequently [28].

-

\

Approach to Development 22 [~

Rapid: Sacrificing Technical

. 1
XP: Technical Processes -1
1

i

XP: Engineering Standards -1 _— r~ XP: Small Teams (6-9)
R r - Rapid: Large Teams
Rapid: Prototyping -~ Methodologies pic-Larg

- Rapid: Complex Roles

Practices

:’ _ XP: Complex Engineering
Challenges

+ _ XP: Frequently Changing
Specifications

-~ Rapid: Less Technical Focus

Figure4: Illustrates a the differences between XP and Rapid

Methodologies

Exploring Extreme Programming and Rapid Methodologies

6. Case Studies

This section showcases real-life case studies to demonstrate the
practical uses of XP and Rapid Methodologies in quick development
projects.

Case Study 1: A Project Using Extreme Programming

Overview:A CRM system was created by a software firm with
the use of Extreme Programming (XP). The objective of the
project was to improve user engagement and simplify customer
interactions.

Main method employed:Pair programming, test-driven
development, and continuous integration were utilized by the
team in every stage of the project.

Outcomes and Effects: The project finished two months earlier
than expected, leading to a 25% rise in user satisfaction when
compared to previous versions of the CRM system. Utilizing
test-driven development led to a decrease in post-launch
defects, resulting in a more seamless deployment process [29].
Challenges Faced:The team was met with initial pushback
from developers who were used to conventional approaches.
Nevertheless, after training and slowly incorporating XP
practices, they managed to successfully incorporate them into
their daily work routine, ultimately improving team
collaboration and productivity [30].

Case Study 2: A Project Using Rapid Methodologies

Overview:A new company plans to create a mobile app for
organizing events using Rapid Application Development. The
objective was to design a user-friendly interface that could
swiftly adjust based on user input.

Key Techniques used:The team heavily relied on prototyping
and receiving user feedback in order to continuously make
improvements to the design through real user interactions.
Results and Impact: The application was released in just three
months, a much quicker pace than conventional development
schedules. Feedback from users showed a strong satisfaction
with the app's features and ease of use, resulting in a successful
introduction to the market [31].

Nabiel Almbrook Algshat

o Challenges Faced: The fast rate of progress resulted in scope
creep, with stakeholders often asking for more features. The
team needed to enforce rigorous prioritization procedures in
order to efficiently handle these requests [32].

7. Conclusion
This paper examined the fundamentals and practices of Extreme
Programming and Rapid Methodologies, underscoring their importance
in fast-track development processes. Both approaches focus on user
participation, gradual development, and teamwork, which make them
ideal for the current dynamic software environment.
The case studies shown illustrate how XP and Rapid Methodologies can
be used in practice to deliver high-quality software efficiently.
Nevertheless, addressing cultural resistance and scope creep is crucial
in order to fully optimize their effectiveness.
With the on-going evolution of the software industry, it is important for
practitioners to stay informed about new trends in fast-track
methodologies, such as integration of artificial intelligence and
machine learning to improve development processes. By selecting the
appropriate methodology tailored to the project's requirements, teams
can enhance their likelihood of success in a more competitive
environment.

References
[1] K. Beck, Extreme Programming Explained: Embrace Change, 2nd
ed. Boston, MA, USA: Addison-Wesley, 2004.
[2] J. A. Highsmith, Agile Project Management: Creating Innovative
Products, 2nd ed. Boston, MA, USA: Addison-Wesley, 2010.
[3] D. Cohen, "The Agile Manifesto: A Brief History," Agile Alliance,
2020. [Online]. Available: https://www.agilealliance.org/agile101/the-
agile-manifesto/
[4] C. Larman and B. Vodde, Scaling Lean & Agile Development:
Thinking and Organizational Tools for Large-Scale Scrum, Boston,
MA, USA: Addison-Wesley, 2009.
[5] A. Cockburn, Agile Software Development: The People Factor,
Boston, MA, USA: Addison-Wesley, 2006.
[6] K. Beck et al., "Manifesto for Agile Software Development,” 2001.
[Online]. Available: http://agilemanifesto.org/
[7] M. Fowler, Refactoring: Improving the Design of Existing Code,
Boston, MA, USA: Addison-Wesley, 1999.

10

http://agilemanifesto.org/

Exploring Extreme Programming and Rapid Methodologies

[8] R. C. Martin, Clean Code: A Handbook of Agile Software
Craftsmanship, Upper Saddle River, NJ, USA: Prentice Hall, 2008.
[9] J. Grenning, "A Practical Guide to Test-Driven Development,”
IEEE Software, vol. 22, no. 6, pp. 78-85, Nov.-Dec. 2005.

[10] J. Highsmith, Agile Software Development Ecosystems, Boston,
MA, USA: Addison-Wesley, 2002.

[11] J. Sutherland and K. Schwaber, "The Scrum Guide," 2020.
[Online]. Available: https://scrumguides.org/scrum-guide.html

[12] J. P. Lewis, "Rapid Application Development,” Software
Development, vol. 4, no. 2, pp. 20-25, Feb. 1996.

[13] R. A. Miller, "The Role of User Feedback in Rapid Application
Development,” Journal of Software Engineering and Applications, vol.
5, no. 3, pp. 123-130, Mar. 2012.

[14] M. Cohn, User Stories Applied: For Agile Software Development,
Boston, MA, USA: Addison-Wesley, 2004.

[15] M. Cohn, User Stories Applied: For Agile Software Development,
Boston, MA, USA: Addison-Wesley, 2004.

[16] R. A. Miller, "The Role of User Feedback in Rapid Application
Development,” Journal of Software Engineering and Applications, vol.
5, no. 3, pp. 123-130, Mar. 2012.

[17] A. Cockburn, "Crystal Clear: A Human-Powered Methodology for
Small Teams," Boston, MA, USA: Addison-Wesley, 2004.

[18] K. Schwaber and J. Sutherland, "The Scrum Guide,” 2020.
[Online]. Available: https://scrumguides.org/scrum-guide.html

[19] J. D. Herbsleb and D. Moitra, "Global Software Development,”
IEEE Software, vol. 18, no. 2, pp. 16-20, Mar.-Apr. 2001.

[20] J. A. Highsmith, "Agile Software Development: The People
Factor," IEEE Software, vol. 20, no. 4, pp. 26-32, Jul.-Aug. 2003.

[21] R. C. Martin, "The Principles of Object-Oriented Design," C++
Report, vol. 3, no. 7, pp. 30-32, 1991.

[22] M. Fowler, "The New Methodology,” Martin Fowler, 2009.
[Online]. Available:
https://martinfowler.com/articles/newmethodology.html

[23] J. Grenning, "A Practical Guide to Test-Driven Development,”
IEEE Software, vol. 22, no. 6, pp. 78-85, Nov.-Dec. 2005.

[24] C. Larman, Applying UML and Patterns: An Introduction to
Object-Oriented Analysis and Design and Iterative Development, 3rd
ed. Upper Saddle River, NJ, USA: Prentice Hall, 2004.

11

https://scrumguides.org/scrum-guide.html
https://scrumguides.org/scrum-guide.html
https://martinfowler.com/articles/newmethodology.html

Nabiel Almbrook Algshat

[25] K. Beck, "Test-Driven Development: By Example,” Boston, MA,
USA: Addison-Wesley, 2002.

[26] A. Cockburn, "Crystal Clear: A Human-Powered Methodology for
Small Teams,” Boston, MA, USA: Addison-Wesley, 2004.

[27] K. Schwaber and J. Sutherland, "The Scrum Guide," 2020.
[Online]. Available: https://scrumguides.org/scrum-guide.html

[28] J. D. Herbsleb and D. Moitra, "Global Software Development,”
IEEE Software, vol. 18, no. 2, pp. 16-20, Mar.-Apr. 2001.

[29] J. A. Highsmith, "Agile Software Development: The People
Factor,” IEEE Software, vol. 20, no. 4, pp. 26-32, Jul.-Aug. 2003.

[30] R. C. Martin, "The Principles of Object-Oriented Design," C++
Report, vol. 3, no. 7, pp. 30-32, 1991.

[31] M. Fowler, "The New Methodology,” Martin Fowler, 2009.
[Online]. Available:
https://martinfowler.com/articles/newmethodology.html

[32] J. Grenning, "A Practical Guide to Test-Driven Development,”
IEEE Software, vol. 22, no. 6, pp. 78-85, Nov.-Dec. 2005.

12

https://scrumguides.org/scrum-guide.html

